Silver-Modified η-Al2O3 Catalyst for DME Production
نویسندگان
چکیده
منابع مشابه
Biodiesel reforming with a NiAl2O4/Al2O3-YSZ catalyst for the production of renewable SOFC fuel
Biodiesel’s contribution as a renewable energy carrier is increasing continuously. Fuel cell market penetration, although slow, is now an irreversible reality. The combination of solid oxide fuel cells (SOFC) with biodiesel offers considerable advantages because it entails both high energy conversion efficiency and nearzero atmospheric carbon emissions. This work is aimed at proving the efficie...
متن کاملHydroprocessing of Jatropha Oil for Production of Green Diesel over Non-sulfided Ni-PTA/Al2O3 Catalyst
The non-sulfided Ni-PTA/Al2O3 catalyst was developed to produce green diesel from the hydroprocessing of Jatropha oil. The Ni-PTA/Al2O3 catalyst was prepared by one-pot synthesis of Ni/Al2O3 with the co-precipitation method and then impregnanting Ni/Al2O3 with PTA solution. The catalysts were characterized with BET, SEM-EDX, TEM, XRD, XPS, TGA and NH3-TPD. The Ni and W species of the Ni-PTA/Al2...
متن کاملHydrogen and Biofuel Production from 2-Propanol Over Ru/Al2O3 Catalyst in Supercritical Water
Hydrogen is an important chemical in many industries and it is expected to become one of the major fuels for energy generation in the future. Unfortunately, hydrogen does not exist in its elemental form in nature and therefore has to be produced from hydrocarbons, hydrogen-containing compounds or water. Above its critical point (374.8C and 22.1MPa), water has lower density and viscosity, and a ...
متن کاملDME Synthesis over MSU-S Catalyst through Methanol Dehydration Reaction
MSU-S mesoporous catalyst with [SiO2]/[Al2O3] ratio of 55 was synthesized using tetrapropylammonium hydroxide (TPAOH) as a structure directing agent and hexadecyltrimethylammonium bromide (CTAB) as a surfactant. The catalytic activity of the calcined sample was evaluated for the dehydration of methanol to dimethyl ether (DME) in a vertical fixed bed microreactor...
متن کاملElimination of formaldehyde over Cu-Al2O3 catalyst at room temperature.
Catalytic elimination of formaldehyde (HCHO) was investigated over Cu-Al2O3 catalyst at room temperature. The results indicated that no oxidation of HCHO into CO2 occurs at room temperature, but the adsorption of HCHO occurs on the catalyst surface. With the increase of gas hourly space velocity (GHSV) and inlet HCHO concentration, the time to reach saturation was shortened proportionally. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Physical Chemistry C
سال: 2017
ISSN: 1932-7447,1932-7455
DOI: 10.1021/acs.jpcc.7b04697